Model-free control of dynamical systems with deep reservoir computing
نویسندگان
چکیده
Abstract We propose and demonstrate a nonlinear control method that can be applied to unknown, complex systems where the controller is based on type of artificial neural network known as reservoir computer. In contrast many modern neural-network-based techniques, which are robust system uncertainties but require model nonetheless, our technique requires no prior knowledge thus model-free. Further, approach does not an initial identification step, resulting in relatively simple efficient learning process. Reservoir computers well-suited problem because they small training data sets remarkably low times. By iteratively adding layers controller, precise law identified quickly. With examples both numerical high-speed experimental systems, we capable controlling highly dynamical display deterministic chaos nontrivial target trajectories.
منابع مشابه
observational dynamical systems
چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...
15 صفحه اولDeep Reservoir Computing: A Critical Analysis
In this paper we propose an empirical analysis of deep recurrent neural networks (RNNs) with stacked layers. The analysis aims at the study and proposal of approaches to develop and enhance multiple timescale and hierarchical dynamics in deep recurrent architectures, within the efficient Reservoir Computing (RC) approach for RNN modeling. Results point out the actual relevance of layering and R...
متن کاملjordan c-dynamical systems
in the first chapter we study the necessary background of structure of commutators of operators and show what the commutator of two operators on a separable hilbert space looks like. in the second chapter we study basic property of jb and jb-algebras, jc and jc-algebras. the purpose of this chapter is to describe derivations of reversible jc-algebras in term of derivations of b (h) which are we...
15 صفحه اولDeep Reservoir Computing Using Cellular Automata
Recurrent Neural Networks (RNNs) have been a prominent concept within artificial intelligence. They are inspired by Biological Neural Networks (BNNs) and provide an intuitive and abstract representation of how BNNs work. Derived from the more generic Artificial Neural Networks (ANNs), the recurrent ones are meant to be used for temporal tasks, such as speech recognition, because they are capabl...
متن کاملParallel computing with extended dynamical systems.
We discuss the scope of parallelism based on extended dynamical systems, in particular, arrays of chaotic elements. As a case study we demonstrate the rapid solution of the Deutsch-Jozsa problem, utilizing the collective properties of such systems.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of physics
سال: 2021
ISSN: ['0022-3700', '1747-3721', '0368-3508', '1747-3713']
DOI: https://doi.org/10.1088/2632-072x/ac24f3